
Value-Driven Analysis and Design: Applying Domain-Driven
Practices in Ethical Software Engineering

Stefan Kapferer
Eastern Switzerland University of

Applied Sciences (OST)
Switzerland

stefan.kapferer@ost.ch

Olaf Zimmermann
Eastern Switzerland University of

Applied Sciences (OST)
Switzerland

olaf.zimmermann@ost.ch

Mirko Stocker
Eastern Switzerland University of

Applied Sciences (OST)
Switzerland

mirko.stocker@ost.ch

Abstract
Business goals and economic values typically drive decisions in digi-
talization efforts and software development projects. There seems to
be a lack of awareness that other values, such as ethical ones, should
be respected to produce systems that do not harm human beings.
Ethical values often are subjective; different stakeholders have dif-
ferent interests and priorities. So how can we make the values of all
stakeholders of a software-intensive system transparent, especially
the negative and positive impacts of the system on those stake-
holders and their values, so that adequate decisions can be made
and tradeoffs be found? The process pattern described in this paper
suggests combining domain-driven analysis and design practices
(modeling the domain, the software design, as well as its impacts
and consequences) with value-based systems engineering (eliciting
and prioritizing values and deriving value requirements from them)
to make values and value requirements first-class citizens of the
engineering process that go through the same refinement steps as
business requirements and technical quality attributes and receive
the same attention during design and implementation. We exem-
plify our process pattern in an online shop scenario that wants
to add a same-day delivery feature, which has different ethical
ramifications for several groups of system stakeholders.

CCS Concepts
• Software and its engineering → Patterns; Requirements
analysis; Software design tradeoffs; • Social and professional
topics→ Codes of ethics.

Keywords
architectural decisions, domain modelling, ethical software engi-
neering, requirements engineering, software design, value-driven
systems engineering
ACM Reference Format:
Stefan Kapferer, Olaf Zimmermann, and Mirko Stocker. 2024. Value-Driven
Analysis and Design: Applying Domain-Driven Practices in Ethical Software
Engineering. In 29th European Conference on Pattern Languages of Programs,
People, and Practices (EuroPLoP 2024), July 03–07, 2024, Irsee, Germany. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3698322.3698332

This work is licensed under a Creative Commons Attribution-NoDerivs International
4.0 License.

EuroPLoP 2024, July 03–07, 2024, Irsee, Germany
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1683-6/24/07
https://doi.org/10.1145/3698322.3698332

1 Introduction
Many recent developments in software and technology, such as
artificial intelligence (AI) and robotics, have shown that systems
that are released to the market not only have positive consequences
on human and ethical values but negative ones as well. This is,
however, not a recent phenomenon. The systems provided by the
big tech companies that we all use on a daily basis have been
reported to promote addictive behavior [4], make us lonely [24, 28],
spy on us [6, 27] and deal with our stolen personal data [12, 20].
Codes of conduct, standards and guidelines towards ethical and
value-based engineering exist [1, 15, 34] but do not always receive
the amount of attention they deserve.

Software development is driven by requirements – functional
and non-functional ones. Software engineers and architects need
to know what the software should be able to do and which im-
portant qualities it should have. These requirements can include
what the users should be able to achieve with the software. Still,
they can also just focus on how the producers or operators of the
software can achieve their business interests and economic goals.
Often, functional requirements are based on the knowledge of the
company or business experts who claim to knowwhat the users and
stakeholders need and want from the system. The Non-Functional
Requirements (NFRs) usually focus on qualities such as security,
maintainability, scalability, etc. that have to be respected in order
to make the system work. When initiating software development
projects, we have to consider whether digitalizing domains and
processes is worth it; if the negative impacts of the system outweigh
the positive ones, it might be in order not to go forward.

Development teams applying Domain-Driven Design (DDD) [14]
and domain-driven requirements engineering practices, including
Domain Storytelling [19] and Event Storming [8], aim to understand
and model domain knowledge in order to find software architec-
tures and designs that align well with the problem domain and take
organizational structures into account (e.g., team topologies dur-
ing development and operations). DDD focuses on communication
between software engineers and business experts to establish that
knowledge. A shared understanding of the problem and a so-called
ubiquitous language shall be established. The idea of analyzing and
modeling the business domain and then finding technically fitting
software designs was already described by earlier Object-Oriented
Analysis and Design (OOAD), e.g., [7]. Placing people and commu-
nication at the center of development processes was later promoted
by the Manifesto for Agile Software Development as well.1 We

1https://agilemanifesto.org

https://orcid.org/0009-0007-1097-7965
https://orcid.org/0009-0003-7923-9777
https://orcid.org/0009-0002-2928-1646
https://doi.org/10.1145/3698322.3698332
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.1145/3698322.3698332
https://agilemanifesto.org

EuroPLoP 2024, July 03–07, 2024, Irsee, Germany Stefan Kapferer, Olaf Zimmermann, and Mirko Stocker

hypothesize that close communication between software develop-
ers and domain experts, promoted by agile and by domain-driven
practices, is a sound starting point for discussions about ethical
values and the impact of a system with all stakeholders.

To weigh the ethical pros and cons of a system and then develop
it in a way that respects all stakeholders’ values – or at least takes
them into account and balances them with/against other require-
ments – developers must first become aware of the stakeholder
values. To do so, we propose to combine value-based engineering
with domain-driven modelling approaches and make values and
the positive and negative impacts of a system transparent as a first-
class concern during software development. The domain-driven
modelling practices can help make important values transparent,
force teams to discuss trade-offs, and make explicit digitalization
decisions.

To work towards our vision and the proposal outlined above, we
suggest a novel process called Value-Driven Analysis and Design
(VDAD) in this paper. The VDAD process was developed as part
of our Just Enough Digitalization (JEDi) research project, which is
part of our broader research agenda towards a more responsible
software engineering [21]. JEDi and VDAD target not only software
engineers, but all human beings involved in the development of soft-
ware. The results of the JEDi project including the process presented
in this paper are also published as an Open-Source repository2 and
the Value-Driven Analysis and Design (VDAD) website.3

Note that we present new knowledge and research in this paper.
While using the format of a pattern to describe the VDAD process,
we can not identify any known uses yet (in the narrow sense of the
term, following the rule of three).

The remainder of this paper is structured as follows. Section 2
discusses related work, focusing on ethics in software engineering
and Domain-Driven Design (DDD). Section 3 presents our proposed
process in pattern form. Section 4 applies the pattern to an online
shop with “same day delivery” as a concrete example. It applies
selected practices to illustrate how the pattern can be applied in
practice. Finally, Section 5 summarizes the paper and outlines future
work.

2 Background Information and Related Work
The IEEE Standard 7000 [1], which can be dowloaded for free, ad-
dresses ethical concerns during system design. Technical standards
such as IEEE Standard 7000 cause additional effort for study and
adoption; some of these standards are perceived as rather difficult
to understand and heavyweight to use. Such entry barriers provide
practitioners reasons to ignore the precious advice and guidance
that could be found in the standard. The ACM Code of Ethics and
Professional Conduct4 provides a set of ethical principles and pro-
fessional responsibilities for computing professionals; while this
focus on individuals is laudable, a value-aware software design
can not be expected to result from following such rules or advice
alone. With the Ethical Software Engineering (ESE) repository5
Zimmermann aims to combine the IEEE Standard 7000 with agile
practices. ESE promotes a more lightweight approach gradually
2https://github.com/ethical-se/value-driven-analysis-and-design
3https://ethical-se.github.io/value-driven-analysis-and-design
4https://www.acm.org/code-of-ethics
5https://github.com/ethical-se/ese-practices

introducing ethical software engineering concepts to agile projects
and teams [39].

According to Ozkaya [29], ethics qualify as software design con-
cerns that should be treated as architecturally significant require-
ments. Value-Sensitive Design (VSD), as presented by Friedman
et al. [17], is a theoretically grounded approach to technology de-
sign that accounts for human values.Winkler and Spiekermann [36]
conducted a review of methodological practices in VSD projects.
Spiekermann and Winkler [34] give a methodological overview of
Value-Based Engineering (VBE) for ethics by design. Spiekermann
published a series of further books on the topic [32, 33]. She splits
VBE into three phases: concept and context exploration, value explo-
ration, and ethically aligned design. The suggested workflow in the
solution part of our pattern presented in this paper extends these
ideas and integrates them into a domain-driven software engineer-
ing approach. We further detail the ethically aligned design phase
as it is rather short and abstract/generic in [33].

Other approaches that aim at fostering ethical values in soft-
ware are Ethical Design,6 Inclusive Design [11] or Social Impact
Assessment (SIA) [16]. Consequence Scanning7 is an “agile prac-
tice for responsible innovators” that allows analyzing the potential
consequences of a product or service on people. Alidoosti et al.
[3] provides a comprehensive and systematic literature review on
ethics in software engineering. They present an overview of inves-
tigations and activities in VSD methods, such as the identification
of stakeholders, their values and value relationships. One of their
findings is that only very little literature discusses the translation
of values into software requirements.

More literature on ethics in software engineering exists. Often,
it is specific to values within a certain problem domain. Very pop-
ular domains where ethics is already highly present these days
are sustainability [25], big data and artificial intelligence [9], and
privacy. The latter has been heavily addressed by regulations such
as the General Data Protection Regulation (GDPR) in recent years
[13]. However, our perception is that ethical thinking has still not
reached mainstream software development. Human and ethical
values are still largely ignored. With the VDAD approach that this
paper proposes, we aim at showing how software can be engineered
in a “value-driven” manner by combining ethical values with ex-
isting software engineering practices, methods and tools that are
widely used in the industry. The approach intends to reduce entry
barriers for software engineers and architects. Note that we do
not discuss the term “value” itself in detail in this paper but refer
the reader to the definitions of the IEEE Standard 7000 [1] and
Value-Based Engineering [33].

The Domain-Driven Design (DDD) approach towards analysis,
requirements, and software design, originally introduced by Evans
[14], emphasizes the need for communication between project stake-
holders. One goal of DDD is to overcome differences between tech-
nical and business people by analyzing the domain and establish
a so-called “ubiquitous language”. It is important to point out that
DDD is focused on human activities, decisions and trade-offs; it
aims at respecting all factors, not only technical, that influence
decisions and application design. We believe that this mindset is

6https://builtin.com/articles/ethical-design
7https://doteveryone.org.uk/project/consequence-scanning

https://github.com/ethical-se/value-driven-analysis-and-design
https://ethical-se.github.io/value-driven-analysis-and-design
https://www.acm.org/code-of-ethics
https://github.com/ethical-se/ese-practices
https://builtin.com/articles/ethical-design
https://doteveryone.org.uk/project/consequence-scanning

Value-Driven Analysis and Design: Applying Domain-Driven Practices in Ethical Software Engineering EuroPLoP 2024, July 03–07, 2024, Irsee, Germany

Figure 1: Domain-Driven Design (DDD) example: bounded context map and domainmodel zoom in (shopping/delivery scenario)

necessary to guide discussions about human and ethical values. We
propose that while software engineers develop knowledge about
their stakeholders and domains, they should also consider capturing
the values of the stakeholders they communicate with.

By suggesting to apply DDD in our work presented in this paper,
we do not limit this to software design and the original strategic
and tactic DDD patterns [14] but domain-driven practices and mod-
elling in a wider sense. Capturing the real world in a domain model
and applying practices such as “event storming”8 or “domain sto-
rytelling” [19] is mainly used for requirements engineering and
object-oriented analysis (OOA) [26]. In DDD terms, analysis hap-
pens by modelling the domain and its subdomains. Domain models
that visualize such subdomains and processes on an analysis level
do not have to use the core DDD patterns already. They can be
created in an initial customer workshop to model the gained under-
standing of the problem without concrete knowledge about DDD
patterns. Models can be refined iteratively and substantiated to-
wards implementation. These modelling practices that go beyond
the original DDD patterns are commonly referred to as “collabora-
tive modelling”.9

Following an object-oriented design (OOD) approach [26], DDD
divides a software system into so-called bounded contexts [14]. Ev-
ery bounded context defines its own domain model that captures
its core concepts and models them in terms of aggregates, entities,
domain events, and value objects. Figure 1 illustrates an exemplary
context map for an online shopping / delivery scenario – a diagram
type used in DDD to show bounded contexts and their relationships.
Spiekermann uses a similar diagram called “context diagram” as
part of the “concept and context exploration” phase in [33]. Fig-
ure 1 further shows a “zoom-in” into one of the bounded contexts,
8https://ziobrando.blogspot.com/2013/11/introducing-event-storming.html
9https://archive.ph/Asn0C

the Orders context. Such a domain model captures the important
concepts and their relations relevant for implementing a software
system or component for that bounded context. Dividing the com-
plete domain of a system into such bounded contexts makes it
possible to discuss all kinds of design concerns – including values
and value requirements – per context and, potentially, make sep-
arate digitalization decisions for each of these contexts. Solving
human or ethical issues with a systemmay not imply that the whole
system should not be built. Some contexts might be more critical
than others. We suggest that the domain models of a system, be it
on analysis levels with subdomains or on design level in terms of
bounded contexts, can be enhanced to cover additional knowledge
about stakeholders and their values. In Section 4, we will come back
to this shopping/delivery scenario and apply our VDAD process to
this example.

Modelling frameworks and tools for DDD, such as our Context
Mapper10 [22] can be used to support the process suggested in this
paper. Note that one can implement the VDAD pattern presented
in this paper with other software development practices and tools.

3 Pattern: Value-Driven Analysis and Design
also known as: Domain-Driven and Value-Oriented Analysis and
Design, Ethical Domain-Driven Design, Value-First Digitalization

The pattern is a process pattern, similar to the Agile Architecture
patterns published by Wirfs-Brock et al. [37] or the Scrum Pattern
Group11. It shall be applicable by software engineers and teams
aiming to provide digital solutions that respect human and ethical
values. We describe the pattern in a slightly adapted EuroPLoP12
format, splitting the Problem and Forces into two separate sections.
10https://contextmapper.org
11https://www.scrumplop.org/scrum-plop
12https://www.europlop.net/patterns

https://ziobrando.blogspot.com/2013/11/introducing-event-storming.html
https://archive.ph/Asn0C
https://contextmapper.org
https://www.scrumplop.org/scrum-plop
https://www.europlop.net/patterns

EuroPLoP 2024, July 03–07, 2024, Irsee, Germany Stefan Kapferer, Olaf Zimmermann, and Mirko Stocker

Since we suggest a new method here, we do not discuss known uses.
Please note that we consider the following process to be iterative
and continuous. It should not end with the development of a system
– new insights that can emerge during the whole lifecycle of the
system might make changes necessary after initial development as
well.

3.1 Context
An organization or project team wants to craft a new software
system or enhance an existing systemwith a new feature. A product
vision already exists. It is clear what the purpose of the product
from a user’s perspective is, and how the organization can benefit
from the system on an economic level (business idea). Maybe first
drafts of some functional requirements in the form of epics13 or
use cases already exist.

However, an analysis of all stakeholders and their values has not
been conducted yet. It is not clear what the impact of the system on
stakeholders and the whole society is. The system could potentially
harm society as a whole or have a negative impact on its users or
other stakeholders.

3.2 Problem
Industry software development practices often result in functional
requirements that are primarily derived from business objectives.
Although user-centric approaches such as Design Thinking [18],
Lean Software Development [30], and Agile14 exist, an empathetic
perspective through the eyes of the users and all those affected by
the system is often not considered or not adequately taken into
account. In addition, these approaches often focus only on the users
of a system and not on the invisible, less obvious stakeholders.15
Methods that ask how a system will affect people such as Impact
Mapping16 exist, but are not always applied in everyday software
development adequately.

As a consequence, software companies produce solutions that
have not only positive but negative impacts on people’s values.
Once the software is on the market, users or other stakeholders
may realize that their privacy is not respected, that the software is
addictive, or that a digital tool has replaced valuable social interac-
tions and made them lonely.17

Hence, the first problem to be addressed is the disclosure of
values:

How to make the values of all stakeholders of a software-
intensive system explicit? How to make the positive and
negative impact of the system on these values transpar-
ent?

The second set of questions progresses from analysis to realiza-
tion:

13https://www.agilealliance.org/glossary/epic
14https://www.agilealliance.org/agile101
15For example, in an online shopping scenario, developers might think about user
experience and goals in a user-centric way, but not about the impact on other people,
such as warehouse staff or delivery personnel.
16https://www.impactmapping.org
17Continuing the list of such examples of negative impacts of digitalized solutions
would be straightforward. Such negative consequences are not necessarily intended –
development teams do not always analyze all stakeholders and their values holistically
as much as they should.

How to derive software development requirements from
the prioritized stakeholder values? How to address such
value requirements during design, implementation, test,
and maintenance?

Finally, the third problem question connects value requirements
with others:

How to deal with conflicts between value requirements,
and between value requirements and other requirements
(business, technical, regulatory)?

3.3 Forces
The following forces stress the application of this pattern:

• Goal conflicts. Different users of the system or other stake-
holders might have contradictory intentions. They might
also have different values and use different value theories
(for example utilitarian ethics vs. virtue ethics vs. duty ethics
[1]). For example, a development team might want to con-
duct an extensive study to evaluate different user interaction
patterns in order to identify an ideal solution for their users.
Economic goals from the perspective of the company that
finances the software, on the other hand, might suggest to
just implement a pragmatic solution based on one’s own ex-
periences in order to fulfill financial goals such as reducing
cost.

• Value conflicts. A system might negatively impact the val-
ues of some stakeholders while it has positive impacts for
others. An example: An online video streaming platform
analyzes its users’ behavior (which videos were watched)
and suggests new videos that might be interesting for the
user by mobile notifications and emails on a daily basis. This
has positive impacts on the operator of the platform since
it increases the time the user spends on the platform. At
first glance, the impacts on the user might also seem posi-
tive; through the suggestions, they might become aware of
movies/videos they would not have seen otherwise. How-
ever, such systems aim at keeping the user hooked and pro-
moting addictive behavior. Furthermore, such platforms can
facilitate a “bubble effect”, whereby users are drawn to simi-
lar videos on comparable topics. Seen in this way, they are
dangerous to human health and the user’s social life. Users
might also not be aware that the platform is analyzing their
behavior; some of them might not want to be observed and
analyzed.

• Dependencies between requirements and ambivalent
consequences of decisions. Value requirements lead to
other requirements, and there might be conflicts. For exam-
ple, a value requirement could be to protect the privacy of a
user. With the term “privacy”, we mean the value of privacy
for a human being; not any technical measures or concrete
non-functional requirements towards an implementation
of a system. Such a value requirement might lead to non-
functional requirements with respect to security measures or
that certain data should not be persisted. Such data could be
required to implement some functional requirements; data
collection might be mandated by law. Note that some ethical

https://www.agilealliance.org/glossary/epic
https://www.agilealliance.org/agile101
https://www.impactmapping.org

Value-Driven Analysis and Design: Applying Domain-Driven Practices in Ethical Software Engineering EuroPLoP 2024, July 03–07, 2024, Irsee, Germany

Figure 2: Value-Driven Analysis and Design: An iterative process to produce software respecting human and ethical values, as
well as economic and business goals, in a repeatable way

values, such as privacy, are already covered by regulations
more than others, as discussed in Section 2.

• Fuzzyness. Values and value requirements are subjective
by nature and, therefore, even more challenging to elicit in
a specific and measurable way than other requirements.

• Effort to elicit, analyze and design. Ethical values are
inherently subjective and often context-specific. They might
change over time as the development team, users, and other
stakeholders learn about a software system and its impacts.
This makes them costly to elicit and respect; the system
has to be kept up-to-date with the latest findings as well.
Any effort spent on value and value requirement elicitation
adds to the effort already required to understand and address
business and technical requirements.

• Uncertainty regarding long-term impact.We often have
to work with hypotheses to handle uncertainty. This is not
only true for technical and architectural uncertainty [31],
but for the unknown ethical impact of a system as well.
Negative effects of a system, for example for society, may
only become apparent after years of use. An iterative and
continuous process is required to manage uncertainty and
adjust products to latest insights.

Note that we consider the listed forces to be particularly impor-
tant and relevant; an initial list resulted from a workshop conducted
by the authors, which was later complemented with insights from
discussions with early readers. That said, the list does not claim to
be either mutually exclusive or collectively exhaustive.

3.4 Solution
The above forces cannot be resolved by a single, simple solution;
their resolution on projects is highly context-dependent. Hence, we
propose a value-centric analysis and design process rather than a
one-size-fits-all design (or set of structural design patterns):

To elicit, negotiate, and address ethical values in soft-
ware development, follow a Value-Driven Analysis and
Design (VDAD) process – 1) understand the domain, 2)
and 3) identify all stakeholders with their ethical val-
ues, 4) prioritize the values, 5) make conscious decisions
about value-sensitive system development (starting with
a go-no go decision), 6) derive and adjust system require-
ments, and 7) design the software architecture with
stakeholder values in mind.

The seven VDAD steps correspond to the activities (light blue
boxes) in the VDAD workflow illustrated in Figure 2.

3.4.1 Step 1: Aquire Domain Understanding: This first step
is covered already in the existing state of the art (i.e., existing
methods), but still worth mentioning and including here:

Apply domain-driven practices to analyze the domain
with its core, generic and supporting subdomains [14]
and acquire knowledge about them. Establish a common
vocabulary, the Ubiquitouous Language of the domain.

Ideally, all stakeholders (from business experts to users and soft-
ware engineers) are involved in this step. The domain knowledge
of the experts and existing business processes are the input to this
step. The knowledge is then written down and analyzed in depth
(output):

• An analysis domain model,18 maybe already per Subdomain,
categorized into the three types core, generic and supporting
[14] or even bounded context (but not necessarily in the first
iteration).

• Workflows that illustrate business processes, elicited with
domain-driven techniques such as event storming [8] or
domain storytelling [19].

• Use cases and/or user stories, as summarized in [38].
18https://socadk.github.io/design-practice-repository/artifact-templates/DPR-
DomainModel

https://socadk.github.io/design-practice-repository/artifact-templates/DPR-DomainModel
https://socadk.github.io/design-practice-repository/artifact-templates/DPR-DomainModel

EuroPLoP 2024, July 03–07, 2024, Irsee, Germany Stefan Kapferer, Olaf Zimmermann, and Mirko Stocker

• Already known Non-Functional Requirements (NFRs) and
technical/organizational constraints. Examples of specific
and measurable NFRs, e.g., regarding usability and supporta-
bility, can be found in the arc42 Quality Model.19

• Additional artifacts depending on project context and needs.

This step produces analysis results that describe the common un-
derstanding of the domain that has been established. These results
do not exhibit design-level details (at least not in the first iterations).
The domain model does not have to use tactic DDD patterns; it does
not aim at being ready to be implemented yet. Event storming [8]
or domain storytelling [19] can also be considered a viable alterna-
tive to domain modelling at this stage. The gained and established
understanding must be captuted; in domain-driven terms, the real
world – as it is – is described in this step.20

3.4.2 Step 2: Identify Stakeholders: Once a domain understand-
ing is established in Step 1, it is possible to create an overview of all
stakeholders; meaning all human beings that are somehow affected
by the system that shall be developed. As discussed by Alidoosti
et al. [3], a major challenge in this step is the identification of invis-
ible stakeholders – stakeholders that do not directly interact with
the system.

Recognize all (visible and invisible) stakeholders.

Visible stakeholders are usually already identified when conduct-
ing functional requirements with user stories or use cases. Examples
for potential invisible stakeholders are the environment and our
society as a whole, the government, or other third party organiza-
tions that are impacted. Identifying invisible stakeholders requires
anticipating who might be indirectly affected by the system. The
stakeholder classification presented in [3] may help in this crucial
step. Having a look at overarching core values [1] or crafting a
“value map” [2] may uncover invisible stakeholders as well.

The output of Step 1 (domainmodel, user stories, and so on) serve
as input to this step. Domain Storytelling [19] or Event Storming
[8] results may also provide valuable hints here. The output of this
step can be a Stakeholder Map21 or a simple list of stakeholders.

Stakeholders can further be grouped; for example product man-
agers and the board of directors might be subordinated to a stake-
holder group called “management”. Additionally, there might be
stakeholder groups that consist of a huge number of individuals. For
example, the “users” group of an online shop or a social media plat-
form is probably huge so that not every individual can be included
in the process. In this case, representatives can be interviewed
and/or the team could work with personas.22

3.4.3 Step 3: Identify Values per Stakeholder: In this impor-
tant step, the values of each stakeholder group are elicited. Ideally,
this is done in direct communication with the affected people. Alter-
natively, it takes an empathetic “putting yourself in the perspective
of the people affected” approach.

19https://quality.arc42.org/qualities
20For the differentiation of these two perspectives (subdomains, OOA vs. bounded
contexts, OOD), we refer the reader to the literature [14, 26, 35].
21https://miro.com/blog/stakeholder-mapping
22https://www.agilealliance.org/glossary/personas

Elicit the individual values of the identified stakehold-
ers. Consolidate this information to create and then
iteratively adjust a value register.

This step takes the Stakeholder Map or list of the previous Step
2 as input. When performing this step, one can apply practices such
as story valuation23 and document the results in a form specified
in IEEE Standard 7000 [1].

Output: We suggest that stakeholders and their values are mod-
eled in the same way as domain knowledge. Value models could
be created with DDD tools such as Context Mapper [23]. Values
per stakeholder can be added to the Value Register, a concept in-
troduced in the IEEE Standard 7000 [1]. The standard defines a
Value Register : “An information store created for transparency and
traceability reasons, which contains data and decisions gained in
ethical values elicitation and prioritization and traceability into
ethical value requirements.”

Once the project team is aware of how the system positively
and negatively influences users and their values, domain models,
use cases, user stories, etc., often have to be adjusted; VDAD is an
iterative process.

When modeling all positive and negative impacts, one faces
conflicts. Adjusting the system and the abovementioned artifacts
probably cannot solve all of these conflicts. However, modelling
these conflicts makes them explicit so that they are not overlooked.

3.4.4 Step 4: Prioritize Stakeholder Values: Once stakehold-
ers and their values have been identified, these values can and
should be analyzed in more depth regarding their importance and
impact (a.k.a. consequences). This step in VDAD is both critical and
challenging.

Prioritize the values identified so far. Identify the most
important values for the team and where it is possible
to compromise. Start and follow a requirements priori-
tization, conflict resolution, and tradeoff management
process that involves all stakeholders.

The output of Step 3, i.e., a value register that conforms to IEEE
Standard 7000 or value statements such as those defined in Ethical
Software Engineering (ESE), constitutes the input for this prior-
itization step. The outputs of this step are enhancements to the
previously created value register and model (enhanced with priori-
ties and reasoning for tradeoffs).

Some parts of the domain and systemmight be more critical than
others. DDD divides systems in bounded contexts; hence, it can
make sense to apply this step separately for each bounded context.

Support and advice for this important step can be found in ESE
[39], Spiekermann [33], and IEEE Standard 7000 [1].

3.4.5 Step 5: Make Digitalization Decision: Systems should
not be built if they are seen to cause more harm than benefit; teams
should be aware of that. Digitalization decisions may be made for
sub-systems or sub-processes.

Introducing this step and decision may sound unrealistic. One
might ask: Do the business leaders not overrule us anyway? Well,
first and foremost this step aims at making decisions conscious
and explicit. If a project follows our suggested process, human and
ethical values can no longer be “swept under the carpet” but one
23https://github.com/ethical-se/ese-practices

https://quality.arc42.org/qualities
https://miro.com/blog/stakeholder-mapping
https://www.agilealliance.org/glossary/personas
https://github.com/ethical-se/ese-practices

Value-Driven Analysis and Design: Applying Domain-Driven Practices in Ethical Software Engineering EuroPLoP 2024, July 03–07, 2024, Irsee, Germany

has to decide to ignore them actively. Whether and how ethical
values are respected and upheld influences the choice of which
company or organization to work for.

We also want to remind everyone involved in software projects
that “being overruled” does not relieve them from responsibility.
One of many real examples is the Volkswagen “Dieselgate” scandal,
where in the end, not only the company faced consequences, but
also software engineers were sentenced to prison [10]. One may
consider the “Dieselgate” example as an extreme one; however,
it illustrates ethical issues that arise in less severe situations and
projects as well.

If the negative impacts of a part of a system seem to
outweigh the positive values, decide within the team
(with all stakeholders) whether it should be built or not.

Input: The digitalization decision is made based on the values,
priorities and tradeoffs found in Step 3 and Step 4. In DDD terms,
it can be made for each bounded context.

Output: The minimal output of this step is a simple ‘Yes’ or ‘No’
answer to the “should we build this?” question. A more elaborate
output includes a decision rationale, which can be found in the
prioritized values from the previous step. The decision and its
rationale can be captured as ADRs, structured according to one
of the many templates that have been suggested in the software
architecture community.

Note that the answer to the “should we build this?” question
can also be “Yes, but . . . ”. It might be possible to find alternative
solutions that allow a company to build a system without harming
the identified values.

Additionally, note that we suggest to process the steps iteratively.
Step 5 can also be postponed for a future iteration in case the
team and/or stakeholders want(s) to delay the decision and gather
additional insights upfront. The iterative approach also allows to
revisit already made decisions.

3.4.6 Step 6: Derive New and Adjust Existing Requirements:
Once it is decided that a system shall be built, one has to adjust
existing and derive new requirements from the produced artifacts
that document stakeholders and their values. All outputs of the
previous steps have to be respected as input in this step.

Treat ethical values as a type or category of Non-Functional
Requirements (NFRs) that complement the desired soft-
ware qualities. Aim at shaping the requirements in such
a way that positive values are promoted and negative
values contained as much as possible.

This step does not only require deriving non-functional require-
ments from stakeholder values, but potentially also adjusting al-
ready known functional requirements. For negative values that
cannot be argued away, one might ask: How can we adjust the sys-
tem to eliminate or minimize negative impact?

The output of this step includes all kinds of requirements – func-
tional, ethical, or other non-functional requirements. These require-
ments can be documented with plain text editors or word processors
as well as state-of-the-art requirements management tools and/or
special-purpose notations such as the ones that ESE suggests [39].

This step may also require conflict resolution, as new ethical re-
quirements may conflict with existing functional or non-functional
requirements.

3.4.7 Step 7: Design Software Architecture: This step is busi-
ness as usual, but still worth including and mentioning in VDAD.

Incorporate the values of your stakeholders in all de-
cisions about architecture, coding, and testing. Apply
domain-driven practices in order to apply the ubiqui-
tous language about the domain knowledge, stakehold-
ers and values to your software architecture, design and
code.

The inputs to this step and designing the software architecture
are the requirements defined in Step 6. However, previous artifacts
such as domain models or context maps influence the architecture
as well when strategic and tactic domain-driven design are applied.
All previous outputs should be taken into account. Analysis domain
models that have already been created in previous steps might need
to be detailed now by using tactical DDD patterns such as aggregate,
entity, service and value object [14].

We refer to the following, exemplary activities of the Design
Practice Repository (DPR) typically performed during this step:

• Architectural Decision Capturing24
• Architecture Modeling25
• Strategic Domain-Driven Design (DDD)26
• Tactic(al) design

The output of this step is indicated by its name, including soft-
ware architecture artifacts such as Architectural Decision Records
(ADRs),27 component diagrams, and deployment models. arc4228
suggests a twelve-part section structure to organize this design
output.

The execution of the VDAD process over its seven steps can
and should be iterative. This allows architectural prototyping, for
example by implementing a Minimum Viable Product (MVP). Fea-
tures can be added by applying vertical slicing; therefore this step
is done in each iteration and your architecture as well as the related
artifacts evolve incrementally.

3.4.8 Process Continuation: Iterate over Steps 1 to 7. As in-
dicated in Figure 2, neither the individual steps nor the entire pro-
cess should be considered a linear, unidirectional sequence. Project
teams typically iterate over each step and the entire workflow to
keep values transparent and respect them during all software de-
velopment lifecycle activities. While stakeholders of different kinds
learn about domain context, requirements, and system capabili-
ties, they might want to reprioritize and/or elicit additional values.
Steps might also have bidirectional dependencies. For instance,
while understanding the domain, new stakeholders might be found;
an analysis of these stakeholders might bring new insights about
the domain (Steps 1 and 2).

24https://socadk.github.io/design-practice-repository/activities/DPR-
ArchitecturalDecisionCapturing
25https://socadk.github.io/design-practice-repository/activities/DPR-
ArchitectureModeling
26https://socadk.github.io/design-practice-repository/activities/DPR-TacticDDD
27https://adr.github.io
28https://www.arc42.de

https://socadk.github.io/design-practice-repository/activities/DPR-ArchitecturalDecisionCapturing
https://socadk.github.io/design-practice-repository/activities/DPR-ArchitecturalDecisionCapturing
https://socadk.github.io/design-practice-repository/activities/DPR-ArchitectureModeling
https://socadk.github.io/design-practice-repository/activities/DPR-ArchitectureModeling
https://socadk.github.io/design-practice-repository/activities/DPR-TacticDDD
https://adr.github.io
https://www.arc42.de

EuroPLoP 2024, July 03–07, 2024, Irsee, Germany Stefan Kapferer, Olaf Zimmermann, and Mirko Stocker

The process continues with state-of-the-art software engineering
practices such as those collected by the Agile Alliance29 to use the
outputs of Step 7 and produce the mentioned working software,
test it, validate and improve it iteratively – always re-evaluating
that it respects the identified values. Ultimately and as early as
possible, working software is produced; architecture models and
code should always be in line with each other along the way.

We do not cover implementation, test, operations, and mainte-
nance any further in our VDAD process. We consider these phases
and their activities to be “business as usual” for the most part be-
cause value requirements are positioned as special types of NFRs
both in IEEE Standard 7000 and in VDAD. Tools such as ArchUnit30
and Context Mapper31 can help keep the architecture/models in
line with the actual code.

3.5 Consequences
The VDADworkflow aims to include an ethical perspective into the
domain-driven development process and treat human and ethical
values as first-class citizens.

3.5.1 Impact on Roles. An important value of Domain-Driven De-
sign (DDD) is building shared knowledge and the “ubiquitous lan-
guage”. We recommend establishing the same common understand-
ing about stakeholders and values. Therefore, it is necessary that
Steps 1 to 4 are not assigned to specific project roles but rather
done together with, ideally, all stakeholders in the project. Once
an agreement on values and priorities has been reached, Steps 5 to
7 do not require every person to be involved. However, we would
still recommend that business and domain experts, as well as tech-
nical people such as software architects are both involved here.
The requirements and software architecture has, in the end, to be
understood by the whole development team (per Bounded Context
at least). However, related processes and practices such as the IEEE
Standard 7000 [1] or ESE32 discuss further useful roles, such as the
“value lead”.

3.5.2 Forces Resolution. The process pattern resolves (or helps
resolve) the forces in the following way:

• Goal conflicts. Conflicts can be identified and discussed by
making all stakeholders and their values transparent. The
prioritization process and involvement of all stakeholders
further help to find a good balance between the different
goals and values.

• Value conflicts.Applying VDADwill not make the conflicts
disappear but will help identify and discuss them to find
acceptable compromises. VDAD steps 2 and 3 help to unveil
conflicts and stimulate discussions to find tradeoffs.

• Dependencies between requirements and ambivalent
consequences of decisions. Modelling brings traceability,
which helps with dependency management. VDAD steps 4
and 6 help to unveil conflicts and stimulate discussions to
find tradeoffs.

29https://www.agilealliance.org/agile101/subway-map-to-agile-practices
30https://www.archunit.org
31https://github.com/ContextMapper/context-mapper-archunit-extension
32https://github.com/ethical-se/ese-practices

• Fuzziness. Processes can be iterated through so that un-
certainty and misunderstanding are reduced along the way.
Making ethical requirements explicit by writing them down
in the same way as other requirements reduces uncertainty
and ambiguity.

• Effort to elicit, analyze, and design. Introducing a process
initially adds effort (learning, customization, usage). How-
ever, this effort usually pays off when applied pragmatically
and consistently. Late work or rework is avoided by using a
repeatable process that has a checklist effect.

• Uncertainty regarding long-term impact.Making known
impact transparent often reveals other issues that would not
have come up without elicitation. The VDAD process there-
fore helps to uncover potential long-term impact. However,
the VDAD process does not yet cover evolution management
after the development process. The resolution of this force
may need to be improved in future work.

Additional patterns and other design elements and practices may
also contribute to a further resolution of the forces (see related work
section).

3.6 Process Summary and Comparison
Table 1 summarizes our suggestions of the previously described
steps. It points out which domain-driven practices and artifacts
we foresee in which steps, and why DDD, modelling and related
domain-driven practices are important for our suggested process.
However, as Table 1 indicates, some extensions to practices and
artifacts are still required. We propose a new approach in the form
of a pattern in this paper; therefore, there are no known uses (and
no corresponding section).

Table 2 compares our own VDAD pattern with other approaches
towards the problem such as the IEEE Standard 7000 [1], Value-
Based Engineering (VBSE) by Spiekermann [33] and Ethical Soft-
ware Engineering (ESE). The phases of the three compared ap-
proaches overlap. However, the compared approaches do not give
much concrete advice with respect to our Steps 6 and 7 (require-
ments and design). One goal of our pattern and this paper is to
assign the steps in the process their useful software practices, meth-
ods and tools. The last step of Table 2 (transparency management
in the IEEE 7000 standard) is actually not covered by VDAD. Other
than that, the different approaches all have their similarities.

4 Example: Online Shopping / Delivery
This section illustrates the application of our VDAD process to a
concrete example.

Initial position: An online shopping provider is considering
extending its platform and service with a “same day delivery” offer-
ing. There is a desire to guarantee same day delivery as a unique
selling point, which is a logistical challenge. The management of
the company is approaching the development team of the online
platform to implement this epic. They want to discuss whether and
how this could be implemented. Customers (shoppers), suppliers
(of offered products), and partners (such as delivery firms) are other
important stakeholders that have to become involved.

https://www.agilealliance.org/agile101/subway-map-to-agile-practices
https://www.archunit.org
https://github.com/ContextMapper/context-mapper-archunit-extension
https://github.com/ethical-se/ese-practices

Value-Driven Analysis and Design: Applying Domain-Driven Practices in Ethical Software Engineering EuroPLoP 2024, July 03–07, 2024, Irsee, Germany

VDAD Step General Practices and Artifacts Domain-Driven Practices and Artifacts

Step 1: Aquire Domain Understanding e.g., use case modelling, user stories; business
process models

collaborative modelling (e.g., event storm-
ing, domain Storytelling), analysis domain
models

Step 2: Identify Stakeholders in use cases and user stories; personas, stake-
holder map

collaborative modelling (e.g., stakeholders
as byproduct of Domain Storytelling)

Step 3: Identify Values per Stakeholder stakeholder map, value register [1], ESE tem-
plates to model values

n/a (extensions required)

Step 4: Prioritize Stakeholder Values Value Register [1], ESE templates n/a (extensions required)
Step 5: Make Digitalization Decision All inputs from steps before, existing decision

records; making decisions based on modelled
knowledge, respecting different stakeholders,
deciding for trade-offs.

n/a (extensions required)

Step 6: Derive New and Adjust Existing
Requirements

Use models and knowledge from previous
steps to elicit and/or refine requirements, e.g.,
analysis domain Model

n/a (extensions required)

Step 7: Design Software Architecture Architectural Decision Records (ADRs), archi-
tecture documentation (for example, filled-out
arc42 template), working software

Strategic and tactic DDD (bounded contexts
and design domain models using tactic DDD
patterns) for architecture and design.

Table 1: Value-Driven Analysis and Design (VDAD) steps, eligible practices, and consumed/produces artifacts.

4.1 Step 1: Acquire Domain Understanding
In a first workshop with managers, developers and representatives
of suppliers and delivery companies the main domain story from
users perspective is discussed. Domain Storytelling [19] is used to
gather knowledge about the story. Figure 3 illustrates a simplified,
exemplary model that could be an output of such a workshop. The
business idea is that if a customer faces an emergency situation
and/or needs a convenience product as soon as possible, the online
platform is able offer to deliver the product “on the same day”
conveniently at a higher price.

Another output of this step, could be a domain model that covers
important concepts (such as a “Same Day Delivery Availability”
information that has to be calculated based on stock and customer
address). In favor of the length of this paper we will not provide
examples for all possible output artifacts.

In a next workshop the development teams and product owner
start to fill the product backlog with items, which include an epic
“same day delivery” and a number of INVEST-ready user stories.33
The desire of the company to offer “same day delivery” serves as
main driver for the epic and product vision.

The following five user stories illustrate examples that the team
created in the backlog. They do not cover the problem completely
but already illustrate that different stakeholders have different
interests regarding this new epic. The stories are articulated in
the human- and machine-readable notation Context Mapper DSL
(CML).34

33INVEST stands for “I” ndependent (of all others), “N” egotiable (not a specific contract
for features), “V” aluable (or vertical), “E” stimable (to a good approximation), “S” mall
(so as to fit within an iteration), “T” estable (in principle, even if there isn’t a test for it
yet). See https://www.agilealliance.org/glossary/invest.
34https://contextmapper.org/docs/user-requirements

UserStory SameDayDeliveryShopping {
As an "Everday Consumer"

I want to "order" a "Convenience Product"
so that "I can respond to emergency situations

conveniently without leaving home."
}

Story 2 is:

UserStory OrderDispatching {
As a "Onlineshop Logistics Manager"

I want to "automate and monitor" the "Supply Chain"
so that "costs go down

and customer satisfaction goes up
(with as few items in stock as possible)."

}

Story 3 read as follows:

UserStory UserRegistration {
As a "Product and Customer Relationship Manager"

I want to "attract" the "Customers"
so that "they shop with us

and not with competition."
}

Story 4 takes the viewpoint of the delivery business partner:

UserStory OrderDeliveryInnovations {
As a "Delivery Business Partner"

I want to "offer" a "new services such as eCar
delivery at affordable rates"

so that "I win bids
and business does not go to my competitors."

}

https://www.agilealliance.org/glossary/invest
https://contextmapper.org/docs/user-requirements

EuroPLoP 2024, July 03–07, 2024, Irsee, Germany Stefan Kapferer, Olaf Zimmermann, and Mirko Stocker

VDAD Pattern IEEE Standard 7000 [1] VBSE Book [33] ESE Repository [39]

Steps 1 and 2 Clause 7: Concept of Operations (ConOps)
and Context Exploration Process

Chapter 4, phase 1: concept and context
exploration

n/a (business as usual)

Steps 3 and 4 Clause 8: Ethical Values Elicitation and Pri-
oritization Process

Chapter 5, phase 2: value exploration Story Valuation

Steps 5 and 6 Clause 9: Ethical Requirements Definition
Process

Chapter 6, phase 3, first step: ethical
value requirements

Story Valuation

Step 7 Clause 10: Ethical Risk-BasedDesign Process Chapter 6, phase 3, subsequent steps:
ethically aligned design

Definition of Ready, Defini-
tion of Done

n/a Clause 11: Transparency Management Pro-
cess

Chapter 7: transparency and informa-
tion management

Ethical Review Meeting and
Report, Value Retrospective

Table 2: VDAD steps compared with IEEE Standard 7000 and related work.

Finally, the exemplary story 5 introduces yet another type of
stakeholder:
UserStory Regulator {

As an "Auditor"
I want to "review" the "online shop with its processes

and use case realizations"
so that "I can assess and assure their

compliance with laws and good practices."
}

In addition to the functional requirements, the team elicited
Non-Functional Requirements (NFRs).35 The technical NFRs in the
sample scenario include selected ones from the FURPS36 classifica-
tion scheme (with F for Functionality being covered by the above
user stories):

• Reliability 1: Data accuracy and timeliness of data exchange
is a high-priority requirement the shop system is supposed to
satisfy; orders, shipments, and invoices as well as relations
between these Domain Model elements, are of particular
importance w.r.t. data accuracy and timeliness/freshness.

• Reliability 2: Web application and IT infrastructure security
guidelines shall be adhered to protect the system as it pro-
cesses the sensitive personal data of its stakeholders (see “As
a” parts of user stories). Examples of such guidelines can be
found at OWASP.37

• Reliability 3: The shop should be available 99.8% of the time,
including weekends and public holidays.

• Performance: All requests should be responded to correctly
within four seconds.

4.2 Step 2: Identify Stakeholders
With this step, the team aims to identify all roles and people in these
roles that have an interest in the extended version of the online
shop. Step 1 focussed on the visible stakeholders; with the help of [3],
the team now creates a stakeholder map to further identify invisible
stakeholders. Figure 4 shows an initial version of this stakeholder

35https://ozimmer.ch/practices/2020/11/19/ExtraExtraReadAllboutIt.html
36https://en.wikipedia.org/wiki/FURPS
37https://owasp.org

map (the team does not aim at making the map complete at this
point; VDAD is applied iteratively and incrementally).

Stakeholders that are not directly visible from the user stories
and domain storytelling in Step 1 are the government (that might
give constraints through laws), other companies that provide the
same offering, and staff of suppliers and delivery partners that
might be affected.

4.3 Step 3: Identify Values per Stakeholder
Now that the team has identified stakeholders, the values and poten-
tial “benefits” and “harms” have to be identified per stakeholder.38
Only a few examples are given that do not fully cover the analysis
of all stakeholders that would be present in a real case.

Figure 5 illustrates a some of the key values identified by the
team. Note that Figure 5 already contains priorities; these will be
assigned in Step 4.

• Customer / Shopper: The customers and shoppers benefit
from the new feature because they can solve their emergency
situation; which might give them autonomy and freedom.
On the other hand, this autonomy harms sustainability: The
feature would lead to increased amount of trips that delivery
partners have to do. In addition, the feature might not be
sustainable in terms of the inner peace and patience of the
customers. Our world is getting faster and faster anyway
already, which increases our stress levels. The “Same Day
Delivery” feature would further add to this phenomenon in
society. As further indicated in Figure 5, there might be an
ambivalent trade-off between “quality of life” and “privacy”
for customers.

• Logistics Team / Delivery Partner (Drivers): As shown
in Figure 5, the logistics team and especially the drivers of
delivery partners might be harmed in terms of “work-life
balance”. This feature will mainly increase work pressure on
these stakeholders.

38For a deeper discussion of what ethical values are, we refer the reader to IEEE 7000
Standard [1]. It also explains values such as “autonomy” and “care”, both used in this
example.

https://ozimmer.ch/practices/2020/11/19/ExtraExtraReadAllboutIt.html
https://en.wikipedia.org/wiki/FURPS
https://owasp.org

Value-Driven Analysis and Design: Applying Domain-Driven Practices in Ethical Software Engineering EuroPLoP 2024, July 03–07, 2024, Irsee, Germany

Figure 3: Sample domain storytelling for Same Day Delivery scenario

• Shopping Platform Company: The feature will increse
company revenue, which is why the management welcomes
and demands the feature.

This list and Figure 5 only provide a few examples. They are
not complete, but it already demonstrates that there are conflicts
between values and stakeholders. These will have to be addressed
in the next steps.

The following examples show how values can be further docu-
mented with notations from the Ethical Software Engineering (ESE)
repository that we introduced in Section 2.39

A sample value register entry is:
As a Delivery Business Partner,

I value Care,
as demonstrated in:
- a realization of shop owner accountability to

shareholders, investors, suppliers, and other
stakeholders;

- a reduction of responsiveness (and profit).
This value cluster has high (but not highest)

priority for me.

The ESE notation used above is called value epic.
A second value register entry is:

39https://github.com/ethical-se/ese-practices

When the online shop executes user story 1
(Online Shopping),
everday consumers/customers expect it to promote
and/or protect:

- autonomy, independence, freedom and self-direction
in particular

- care, comfort and quality of life in particular
possibly harming

- sustainability and respect (for delivery firm/staff)
by the following externally observable

and/or internally auditable behavior:
- increased hours of vehicles on the road
- delivery team workload, overtime

Again, the notation is adapted from ESE. It is called value narra-
tive there. ESE picks up concepts and wording from IEEE Standard
7000 such as value register and value cluster.40

4.4 Step 4: Prioritize Stakeholder Values
We already indicated in Figure 5 that the team started to prioritize
values. This can be done by stakeholder, but in the end trade-offs
have to be found in order to be able to make a digitalization deci-
sion for the complete epic. Some benefits or harms will always be

40The ESE Glossary provides explanations of key terms in IEEE Standard 7000.

https://github.com/ethical-se/ese-practices
https://github.com/ethical-se/ese-practices/blob/main/ESE-Glossary.md

EuroPLoP 2024, July 03–07, 2024, Irsee, Germany Stefan Kapferer, Olaf Zimmermann, and Mirko Stocker

Figure 4: Sample stakeholder map for Same Day Delivery scenario

promoted, while for others, the team/company has to accept that
they are harmed. A graphical representation (of parts of values as
EVRs/VBSRs) as “value case diagram” is shown in the Figure 5.

In the following, we again use selected templates from the open-
source ESE repository to show how such prioritizations can be
documented. A sample value deals with user registration and prior-
itizes autonomy over sustainability:
UserStory CustomersAttraction {

As a "Product and Customer Relationship Manager"
I want to "attract" the "Customers"
so that "they shop with us and not with competition"
and that "business value, revenue and autonomy"

are promoted
accepting that "sustainability" is harmed

}

The notation used in the above example is an extended user story
format written in the Context Mapper DSL (CML) language [23].
Since its Release 6.12, the Context Mapper tool supports this ESE
notation as well as stakeholder and value modelling.41

Another value cluster and value register entry prioritizing effi-
ciency over privacy (among other prioritizations) is:
In the context of Same Day Delivery epic for the
Online Shop (SOI),
the Onlineshop Logistics Manager (stakeholder)
values

quality of life (of customers) and efficiency

41https://contextmapper.org/docs/vdad-support

more than
privacy and
quality of life (of delivery staff),

expecting benefits such as
more profit,

running the risk of harms such as
staff burnout.

This “value weighting” has been populated from core values in
IEEE Standard 7000. Value weighting it is one of the formats that
ESE suggests to produce lightweight but expressive, recognizable
value register entries.

4.5 Step 5: Make Digitalization Decision
The team decides to implement the new user stories as the pos-
itive consequences outweigh the negative ones. The decision is
formulated as a Y-statement:42
In the context of the same day delivery epic and its
user stories facing the need to be profitable,
but also wanting to respect the ethical values
of the stakeholders of the online shop,
the product owner decides to move forward
with the realization of the epic,
to achieve that

the shop becomes even more attractive to its customers,
accepting that

the pressure on delivery partners
and delivery staff increases further.

42https://socadk.github.io/design-practice-repository/artifact-templates

https://contextmapper.org/docs/vdad-support
https://socadk.github.io/design-practice-repository/artifact-templates

Value-Driven Analysis and Design: Applying Domain-Driven Practices in Ethical Software Engineering EuroPLoP 2024, July 03–07, 2024, Irsee, Germany

Figure 5: Sample value register for Same Day Delivery scenario

The team plans the following mitigation actions for the negative
consequences of that decision:

• Do not make Same Day Delivery the default: The system
should support this feature to win customers who need it
in an emergency. On the other hand, the system should
not create false incentives and make “same day delivery”
the default. The feature shall be provided together with the
corresponding wording “for emergencies”. Thereby, the team
wants to protect sustainability. If every order used the feature,
sustainability would be harmed and delivery partners would
not be able to handle it.

• Pricing to set the right incentives: The price for delivery
must also be higher so that customers do not use the feature
in every situation.

• Availability based on staff workload: To prevent staff
burnout, the team foresees that the system should limit the
availability of same day delivery based on the delivery teams
workload. On days were the workload becomes “unmanage-
able”, the system should react on the situation. This could
mean that the “same day delivery” becomes unavailable for

limited time windows or that the prices are adjusted based
on workload. Strategies still need to be worked out in detail.

4.6 Step 6: Derive New and Adjust Existing
Requirements

Based on the decision in Step 5, the team has to adjust existing
requirements and derive new ones. For this example, we illustrate
some selected sample Ethical Value Requirements (EVRs) first:

The system shall implement the user story "Same Day Delivery
Shopping" without making it the default.

A customer should actively choose to be in an
emergency situation and pay a fair price
for the same day delivery service.

Another sample EVR is:

The system shall realize the user story "Order Dispatching"
with 99 percent accuracy,

a made promise to deliver on the same day
should only be broken in 1 out of 100 cases.

This is required to satisfy the value clusters from VDAD steps
3 and 4.

EuroPLoP 2024, July 03–07, 2024, Irsee, Germany Stefan Kapferer, Olaf Zimmermann, and Mirko Stocker

Finally, here are two examples of VBSRs, the first one addressing
mitigation actions from Step 5 (in a format originally suggested in
ESE):
To satisfy EVRs SameDayDelivery and OrderDispatching
and treat the risks related to it,
the high priority concerns of the Logistics Manager,
Delivery Partners and Shop Provider are:

- the SOI has to implement technical risk treatment
option Reliable Messaging

- the system shall react on high workload of delivery
staff and adjust availability of the same day
delivery feature automatically

- the Onlineshop Logistics Manager has to schedule
for three shifts and find staff for them

- the organization operating the shop has to pay for
extra working hours of delivery staff
and motivate staff to volunteer for unpopular shifts.

and, one in the form of a quality attribute scenario:
Stimulus: User Registration story
Concern Of: Product and Customer Relationship Manager
Observable When: Runtime, normal operations
Materializing In: User Interface, Business Logic Layer

and EAI middleware in/of the SOI
Value Requirement: EVR-UserRegistration
Value Requirement Measure: 10% growth every quarter,

values: inclusiveness, perfection

The quality attribute scenario format originates from “Software
Architecture in Practice” [5]; it has has been adopted for our value-
driven method context in ESE [39].

4.7 Step 7: Design Software Architecture
In this step, the SDD team applies more (strategic and tactic) DDD,
makes architectural decisions and records them as ADRs. The re-
sulting software architecture may also be modelled. See Section 3
for pointers to techniques and templates.

The following example ADR could be one consequence of the
previous steps:
Integrate Delivery Availabilities

Context and Problem Statement
How should the shop system adjust the availability
of the same day delivery offer in order to satisfy
the EVRs defined in Step 6? How is it informed
that delivery can no longer be guaranteed on a
given day because the work-life of the logistics
and delivery stuff must be protected?

Considered Options
* Manual action by the delivery staff

(feature toggle)
* Integrate with planning/staffing systems of delivery

partners for automatic detection of unmanageable
workloads

Decision Outcome:
Chosen option: Automated solution via system integration,

because workload can be reduced earlier
and additional manual tasks often lead to mistakes,
e.g. when staff is very busy.

The ADR is written in the MADR format.43 The Design Practice
Reference/Repository (DPR) collects proven practices, including
strategic and tactic DDD, as well as diagram types and notations44
for architecture modeling and decision capturing. All activity and
artifact descriptions in DPR come with additional examples [38].

4.8 Continue Iteratively
Our VDAD process pattern suggests to perform its steps iteratively.
Step 7 is, therefore, not the end of the value-driven analysis and
design work in practice. While working on design and architecture,
the team gains new insights. The VDAD process can be restarted
from the beginning to adjust related artifacts accordingly. All out-
puts mentioned in the individual steps should become more mature
in every iteration of the process. Not every step has to receive the
same amount of attention in every iteration.

5 Summary and Outlook
In this paper, we discussed how to make the ethical impact of a
software-intensive system transparent so that the ethical values
of the stakeholders become first-class concerns during software
development; the positive and negative impact of the system on
these values is made explicit so that it can be prioritized and con-
flicts be managed and mitigated. We presented a value-enhanced
process called Value-Driven Analysis and Design (VDAD) in a
pattern format. The seven steps of VDAD cover the software de-
velopment lifecycle from analysis to design; they can and should
not be performed sequentially but in an iterative and incremental
way. As an important additional step, our process suggests making
value-driven digitalization decisions explicitly for each system or
subsystem (i.e., Bounded Context in domain-driven design terms).

As a direction for future work, one could also consider making
the ethical and value-based design decisions and impacts of a system
transparent to the end-user of the software product. By making
decision records public, users could understand how decisions were
made and why their creators may have accepted negative impacts.
Furthermore, additional work is required in some of the presented
steps to develop extensions to practices and tooling where needed.

The proposed process suggests a new approach; it is not a pat-
tern that we have discovered and mined in projects in practice.
We therefore plan to apply the process in projects to validate the
approach in “real world” scenarios. This future work might lead to
smaller patterns focussing on individual steps of the value-driven
process proposed in this paper; it may also yield to pattern mining
in the area of ethical software engineering.

We further plan to open our research for a broader target au-
dience, as we hypothesize that in many cases the business plan
and strategy of a company already has a major impact on ethical
issues that will arise with the software they produce. The ideas of
company founders, leaders, and sponsors presumably can not be
“overruled” easily by software engineers. The problem we aim to
tackle with our process, has to be addressed on the management
level as well.

43https://adr.github.io/madr
44https://socadk.github.io/design-practice-repository/artifact-templates

https://adr.github.io/madr
https://socadk.github.io/design-practice-repository/artifact-templates

Value-Driven Analysis and Design: Applying Domain-Driven Practices in Ethical Software Engineering EuroPLoP 2024, July 03–07, 2024, Irsee, Germany

Another open problem that we acknowledge is that many ethical
and especially societal issues may only arise after years of experi-
ence with a new technology. For example, issues with social media
platforms that we are aware of today (such as addictive behav-
ior [4], issues with personal data [12, 20], etc.) were simply not
known at the time they were developed – and the question remains
whether a process like the one presented in this paper would have
identified these problems at the time. In future research processes
therefore might be extended to investigate how ethical problems
with systems can be monitored over the long term.

Acknowledgments
We would like to thank our shepherd Uwe Zdun for his valuable
comments and feedback, which improved the paper significantly.
We also want to thank the participants of the EuroPLoP 2024 Writ-
ers’ Workshop Berrin Akvardar, Monika Blattmeier, Veli-Pekka
Eloranta, Allan Kelly, Ralf Laue, Daniel Lübke, Tsvetelina Plummer
and Ville Reijonen for their valuable feedback.

References
[1] 2021. IEEE Standard Model Process for Addressing Ethical Concerns during

System Design. IEEE Std 7000-2021 (2021), 1–82. https://doi.org/10.1109/IEEESTD.
2021.9536679

[2] Razieh Alidoosti, Martina De Sanctis, Ludovico Iovino, Patricia Lago, andMaryam
Razavian. 2023. Stakeholder Inclusion and Value Diversity: An Evaluation Using
an Access Control System. In European Conference on Software Architecture.
Springer.

[3] Razieh Alidoosti, Patricia Lago, Maryam Razavian, and Antony Tang. 2022. Ethics
in Software Engineering: A Systematic Literature Review.

[4] Adam Alter. 2017. Irresistible: The Rise of Addictive Technology and the Business
of Keeping Us Hooked. Penguin Group.

[5] Len Bass, Paul Clements, and Rick Kazman. 2021. Software Architecture in Practice
(4th ed.). Addison-Wesley Professional.

[6] Zygmunt Bauman, Didier Bigo, Paulo Esteves, Elspeth Guild, Vivienne Jabri,
David Lyon, and R. B. J. Walker. 2014. After Snowden: Rethinking the Impact
of Surveillance. International Political Sociology 8, 2 (2014), 121–144. https:
//doi.org/10.1111/ips.12048

[7] Grady Booch. 1994. Object-oriented Analysis and Design with Applications. Ben-
jamin/Cummings Publishing Company.

[8] Alberto Brandolini. 2021. Introducing EventStorming - An act of Deliberate Collec-
tive Learning. LeanPub. https://leanpub.com/introducing_eventstorming

[9] Adam Briggle, Katinka Waelbers, and Philip Brey. 2008. Current Issues in Com-
puting and Philosophy. IOS Press.

[10] Ian Brooks, James Longhurst, Mario Kossmann, and Mohammed Odeh. 2018.
Implementing the United Nations Sustainable Development Goals for the Systems
Engineering of Multinational Corporations. In INCOSE International Symposium,
Vol. 28. 1399–1411.

[11] P.J. Clarkson, R. Coleman, S. Keates, and C. Lebbon. 2013. Inclusive Design: Design
for the Whole Population. Springer London.

[12] Greg Conti. 2008. Googling security: how much does Google know about you?
Pearson Education.

[13] EU. 2016. General Data Protection Regulation. https://eur-lex.europa.eu/eli/reg/
2016/679/oj

[14] Eric Evans. 2003. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley.

[15] Association for Computing Machinery (ACM). 2018. ACM Code of Ethics and
Professional Conduct. https://www.acm.org/code-of-ethics.

[16] William R Freudenburg. 1986. Social impact assessment. Annual review of
sociology 12, 1 (1986), 451–478.

[17] Batya Friedman, Peter Kahn, Alan Borning, Ping Zhang, and Dennis Galletta.
2006. Value Sensitive Design and Information Systems. https://doi.org/10.1007/978-
94-007-7844-3_4

[18] Hester Hilbrecht and Oliver Kempkens. 2013. Design Thinking im Unternehmen
– Herausforderung mit Mehrwert. Springer Fachmedien Wiesbaden, 347–364.
https://doi.org/10.1007/978-3-658-00371-5_18

[19] Stefan Hofer and Henning Schwentner. 2021. Domain Storytelling: A Collabora-
tive, Visual, and Agile Way to Build Domain-Driven Software. Addison-Wesley
Professional.

[20] Jim Isaak and Mina J. Hanna. 2018. User Data Privacy: Facebook, Cambridge
Analytica, and Privacy Protection. Computer 51, 8 (2018), 56–59. https://doi.org/

10.1109/MC.2018.3191268
[21] Stefan Kapferer, Mirko Stocker, andOlaf Zimmermann. 2024. Towards responsible

software engineering: combining value-based processes, agile practices, and
green metering. In 2024 IEEE International Symposium on Technology and Society
(ISTAS). Accepted paper; to be published soon.

[22] Stefan Kapferer. and Olaf Zimmermann. 2020. Domain-specific Language and
Tools for Strategic Domain-driven Design, Context Mapping and Bounded Con-
text Modeling. In Proceedings of the 8th International Conference on Model-Driven
Engineering and Software Development - MODELSWARD. INSTICC, SciTePress,
299–306. https://doi.org/10.5220/0008910502990306

[23] Stefan Kapferer and Olaf Zimmermann. 2021. Domain-Driven Architecture Mod-
eling and Rapid Prototyping with Context Mapper. In Model-Driven Engineering
and Software Development, Slimane Hammoudi, Luís Ferreira Pires, and Bran
Selić (Eds.). Springer International Publishing, Cham, 250–272.

[24] Jihyun Kim Kelly Merrill and Chad Collins. 2022. AI companions for lonely
individuals and the role of social presence. Communication Research Reports 39,
2 (2022), 93–103. https://doi.org/10.1080/08824096.2022.2045929

[25] Patricia Lago, Roberto Verdecchia, Nelly Condori-Fernandez, Eko Rahmadian,
Janina Sturm, Thijmen van Nijnanten, Rex Bosma, Christophe Debuysscher, and
Paulo Ricardo. 2021. Designing for sustainability: lessons learned from four
industrial projects. In Advances and New Trends in Environmental Informatics:
Digital Twins for Sustainability. Springer, 3–18.

[26] Craig Larman. 2001. Applying UML and pattern: an introduction to object oriented
analysis and design and the unified process.

[27] David Lyon. 2014. Surveillance, Snowden, and Big Data: Capacities, consequences,
critique. Big Data & Society 1, 2 (2014). https://doi.org/10.1177/2053951714541861

[28] Martha Newson, Yi Zhao, Marwa El Zein, Justin Sulik, Guillaume Dezecache,
Ophelia Deroy, and Bahar Tunçgenç. [n. d.]. Digital contact does not promote
wellbeing, but face-to-face contact does: A cross-national survey during the
COVID-19 pandemic. New Media & Society ([n. d.]). https://doi.org/10.1177/
14614448211062164

[29] Ipek Ozkaya. 2019. Ethics Is a Software Design Concern. IEEE Software 36, 3
(2019), 4–8. https://doi.org/10.1109/MS.2019.2902592

[30] M. Poppendieck, T.D. Poppendieck, and T. Poppendieck. 2003. Lean Software
Development: An Agile Toolkit. Addison-Wesley.

[31] Kelson Silva, Jorge Melegati, Xiaofeng Wang, Mauricio Ferreira, and Eduardo
Guerra. 2024. Using Hypotheses to Manage Technical Uncertainty and Archi-
tecture Evolution in a Software Start-up. IEEE Software 41, 04 (jul 2024), 7–13.
https://doi.org/10.1109/MS.2024.3383628

[32] Sarah Spiekermann. 2019. Digitale Ethik: Ein Wertesystem für das 21. Jahrhundert.
Droemer.

[33] Sarah Spiekermann. 2023. Value-Based Engineering. De Gruyter, Berlin, Boston.
https://doi.org/doi:10.1515/9783110793383

[34] Sarah Spiekermann and Till Winkler. 2020. Value-based Engineering for Ethics
by Design. arXiv:2004.13676 [cs.CY]

[35] Vaughn Vernon. 2013. Implementing Domain-Driven Design. Addison-Wesley.
[36] TillWinkler and Sarah Spiekermann. 2021. Twenty years of value sensitive design:

a review of methodological practices in VSD projects. Ethics and Information
Technology 23, 1 (01Mar 2021), 17–21. https://doi.org/10.1007/s10676-018-9476-2

[37] Rebecca Wirfs-Brock, Joseph Yoder, and Eduardo Guerra. 2015. Patterns to
develop and evolve architecture during an agile software project. In Proceedings of
the 22nd Conference on Pattern Languages of Programs (Pittsburgh, Pennsylvania)
(PLoP ’15). The Hillside Group, USA, Article 9, 18 pages.

[38] Olaf Zimmermann andMirko Stocker. 2021. Design Practice Reference - Guides and
Templates to Craft Quality Software in Style. LeanPub. https://leanpub.com/dpr

[39] Olaf Zimmermann, Mirko Stocker, and Stefan Kapferer. 2024. Bringing Ethical
Values into Agile Software Engineering. In Smart Ethics in the Digital World:
Proceedings of the ETHICOMP 2024. 21th International Conference on the Ethical
and Social Impacts of ICT. Universidad de La Rioja, Fundación Dialnet, 90–93.
https://github.com/ethical-se/ese-practices

https://doi.org/10.1109/IEEESTD.2021.9536679
https://doi.org/10.1109/IEEESTD.2021.9536679
https://doi.org/10.1111/ips.12048
https://doi.org/10.1111/ips.12048
https://leanpub.com/introducing_eventstorming
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://www.acm.org/code-of-ethics
https://doi.org/10.1007/978-94-007-7844-3_4
https://doi.org/10.1007/978-94-007-7844-3_4
https://doi.org/10.1007/978-3-658-00371-5_18
https://doi.org/10.1109/MC.2018.3191268
https://doi.org/10.1109/MC.2018.3191268
https://doi.org/10.5220/0008910502990306
https://doi.org/10.1080/08824096.2022.2045929
https://doi.org/10.1177/2053951714541861
https://doi.org/10.1177/14614448211062164
https://doi.org/10.1177/14614448211062164
https://doi.org/10.1109/MS.2019.2902592
https://doi.org/10.1109/MS.2024.3383628
https://doi.org/doi:10.1515/9783110793383
https://arxiv.org/abs/2004.13676
https://doi.org/10.1007/s10676-018-9476-2
https://leanpub.com/dpr
https://github.com/ethical-se/ese-practices

	Abstract
	1 Introduction
	2 Background Information and Related Work
	3 Pattern: Value-Driven Analysis and Design
	3.1 Context
	3.2 Problem
	3.3 Forces
	3.4 Solution
	3.5 Consequences
	3.6 Process Summary and Comparison

	4 Example: Online Shopping / Delivery
	4.1 Step 1: Acquire Domain Understanding
	4.2 Step 2: Identify Stakeholders
	4.3 Step 3: Identify Values per Stakeholder
	4.4 Step 4: Prioritize Stakeholder Values
	4.5 Step 5: Make Digitalization Decision
	4.6 Step 6: Derive New and Adjust Existing Requirements
	4.7 Step 7: Design Software Architecture
	4.8 Continue Iteratively

	5 Summary and Outlook
	Acknowledgments
	References

